Promptware Threats Turn LLM Attacks Into Multi-Stage Malware Campaigns

 

Large language models are now embedded in everyday workplace tasks, powering automated support tools and autonomous assistants that manage calendars, write code, and handle financial actions. As these systems expand in capability and adoption, they also introduce new security weaknesses. Experts warn that threats against LLMs have evolved beyond simple prompt tricks and now resemble coordinated cyberattacks, carried out in structured stages much like traditional malware campaigns. 

This growing threat category is known as “promptware,” referring to malicious activity designed to exploit vulnerabilities in LLM-based applications. It differs from basic prompt injection, which researchers describe as only one part of a broader and more serious risk. Promptware follows a deliberate sequence: attackers gain entry using deceptive prompts, bypass safety controls to increase privileges, establish persistence, and then spread across connected services before completing their objectives.
 
Because this approach mirrors conventional malware operations, long-established cybersecurity strategies can still help defend AI environments. Rather than treating LLM attacks as isolated incidents, organizations are being urged to view them as multi-phase campaigns with multiple points where defenses can interrupt progress.
 
Researchers Ben Nassi, Bruce Schneier, and Oleg Brodt—affiliated with Tel Aviv University, Harvard Kennedy School, and Ben-

[…]
Content was cut in order to protect the source.Please visit the source for the rest of the article.

This article has been indexed from CySecurity News – Latest Information Security and Hacking Incidents

Read the original article: